
Autonomous Network Defence using
Reinforcement Learning

An Investigation of Robustness using Enhanced Adversarial Strategies

Candidate Number: QTHG11

MSc Information Security

Supervisors: Vasilios Mavroudis, Chris Hicks, and Steven Murdoch

Submission Date: 12/09/2022

1Disclaimer: This report is submitted as part requirement for the MSc Degree in Information Security
at UCL. It is substantially the result of my own work except where explicitly indicated in the text. The
report may be freely copied and distributed provided the source is explicitly acknowledged.

Abstract

Network defence becomes more challenging because of the dramatic increase in network size and the

growing shortage of cyber security professionals. In contrast, current adversaries (e.g., Advanced

Persistent Threat attackers) keep evolving their capabilities through information gathering and

the development of defence evasion tools. A promising research direction to solve such problems

is Artificial Intelligence for Security. Because of the success of Reinforcement Learning in games,

it is possible to extend its applications to network security. The current works mainly focus on

automated penetrating testing and intelligent intrusion detection systems. One of the limitations

of these works is that their environments lack competitive interactions between attackers and

defenders. Therefore, we investigate the capabilities of an autonomous network defender who can

actively select actions to mitigate the impact of adversaries in an interactive cyber environment

named CybORG. The main contributions of this work are extending the performance of prior

adversarial strategies, training novel autonomous agents, and evaluating performance. Our results

indicate that the hierarchical Reinforcement Learning method can successfully defend against

multiple types of adversaries over varying lengths of time with high performance and robustness.

Keywords: Network Security; Advanced Persistent Threat; Reinforcement Learning; Robustness

Acknowledgements

I would like to sincerely thank my great supervisors, Dr. Vasilios Mavroudis, Dr. Chris Hicks, and

Prof. Steven Murdoch, for their full range of guidance and support in researching, coding, and

writing during my dissertation project. Every time I had a new idea or confusion, they always

encouraged me and provided helpful advice. Besides, the Department of Computer Science at UCL

provides me with systematical learning resources for Information Security, which has become the

knowledge basis of my dissertation. I am also grateful for all staff in this department who provide

high-quality teaching and technical support in high performance computing for this dissertation.

Finally, I express my gratitude to my family and friends, who are always there for me.

Contents

1 Introduction 3

1.1 Background and Motivation . 3

1.2 Achievements and Thesis Structure . 4

2 Literature Review 6

2.1 Reinforcement Learning . 6

2.1.1 Hierarchical Reinforcement Learning . 7

2.2 Advanced Persistent Threats . 8

2.2.1 Processes of APT Attacks . 8

2.2.2 MITRE ATT&CK Matrix . 10

2.3 Autonomous Network Defence . 10

2.3.1 Automated Penetration Testing . 11

2.3.2 Intelligent Intrusion Detection Systems . 11

3 The CAGE Challenge in CybORG Environment 12

3.1 Scenario and Environment . 12

3.2 Agents and Actions . 13

3.2.1 Red Agents as Adversaries . 13

3.2.2 Green Agents as Normal Users . 14

3.2.3 Blue Agents as Defenders . 14

3.3 States and Observations . 15

4 Autonomous Network Defence using Reinforcement Learning 16

4.1 Proximal Policy Optimisation . 16

4.2 Intrinsic Curiosity Module . 18

4.3 Hierarchical Architecture . 19

5 Extensions and Experiments 21

5.1 Extended Adversarial Strategies . 21

5.1.1 Defence Evasion . 21

5.1.2 Randomised Attacking Paths . 22

5.1.3 Autonomous Network Attackers . 23

5.2 Training Details . 23

5.2.1 Hardware and Software Environment . 23

1

5.2.2 Training Settings . 24

5.3 Evaluation and Comparison . 24

5.3.1 Performance of Trained Red Agents . 24

5.3.2 Performance of Trained Blue Agents . 25

6 Discussion and Conclusion 29

6.1 Contributions . 29

6.2 Limitations and Future Works . 30

6.3 Closing Remarks . 31

A Code Repository and Technical Contributions 36

A.1 Code Repository . 36

A.2 Technical Contributions . 36

B List of Hyperparameters 37

B.1 Hyperparameters for Autonomous Red Agents . 37

B.2 Hyperparameters for Autonomous Blue Agents . 38

2

Chapter 1

Introduction

1.1 Background and Motivation

Informatisation techniques have altered how enterprises, organisations, and governments operate

and improved the efficiency of communication and data processing. However, more opportunities

are also provided to adversaries who aim to collect sensitive information from victims for financial

gains or political missions. Advanced Persistent Threats (APT) are taken seriously by many

organisations and nations due to their complexity and insidious features. This kind of adversary

is usually state-sponsored and has advanced techniques and enough patience to hide in the target

network. Their common goals are to steal valuable data and impact essential services when

necessary. Since APT adversaries prefer to perform slow and covert movements over a relatively

long period, it is difficult for victims to find evidence even after the attackers have accomplished

their goals. Therefore, continuous and active network defence should become an indispensable

part in operations and managements to mitigate the impact caused by the APT attackers.

Network defence against APT has become a significant area in cyber security that attracts

global interest from industry and academia [10]. Defence is a more complex task than attack since

defence requires correct combinations of various defending tools and comprehensive knowledge in

cyber security. It must also remove the threat, find tracks or evidence, and fix related vulner-

abilities. This fact indicates that network defence usually needs enough professional employees.

However, the reality is the opposite since many countries have an extreme shortage of cyber se-

curity experts. Moreover, this human operation has high operational costs and a long response

time compared with an autonomous system. The former allows only large companies and essential

government departments to adopt a comprehensive defence strategy, while the latter makes the

applied defence strategies less reliable than expected. The situation worsens when information

technology becomes more popular as more devices are added to networks, which will increase net-

work traffic exponentially. This phenomenon leads to even experts struggling to pre-empt attack

strategies in large-scale networks. Therefore, autonomous network defence should be developed to

gather cyber threat intelligence and defend against attackers actively.

One cutting-edge approach to implementing autonomous network defence is to apply Artificial

Intelligence (AI). Supervised Learning has already been used in malware detection [3], and Natural

Language Processing (NLP) can extract valuable information from extensive daily logs and alerts,

3

which can greatly reduce response times. As a significant direction in the AI area, Reinforcement

Learning (RL) has been shown to outperform humans in games. Therefore, it is a promising

direction to investigate the capabilities of RL algorithms in network attack and defence. Recent

research mainly focuses on penetrating testing [39] [46] and intrusion detection systems [50] [11]

[24]. One limitation of these works is that the tested environments lack competitive interactions

between adversaries and attackers. Although their efficiency and accuracy are optimised compared

with previous works, there is still a gap with the real world. In contrast, the CybORG environment

[2] where attackers and defenders can interact with each other is used in this research. In the

CybORG environment, if one action that APT attackers perform has harmful impacts, the network

defender will receive a punishment (i.e., negative performance). Thus, if the trained defender wants

higher rewards (i.e., positive performance), it must select the correct combination of actions to

mitigate the attack.

APT attackers are usually sponsored by different organisations or governments, and their

targets also vary. Their capabilities might also differ since they could be based on knowledge about

the victim’s network environment and the chosen advanced tools that can bypass the traditional

detection methods. This fact indicates that APT adversaries prefer to develop their bespoke

strategies to compromise hosts in a target network. These different strategies can make it difficult

to model a particular attacker for a network defender that needs to be trained by the RL methods.

Furthermore, APT attackers will keep trying to attack more devices on the network as long as they

exist. This behaviour helps the attackers gather sensitive data for further attacks and to achieve

more advanced goals. A recent report shows that the average time before an APT attacker can

be detected in 2020 is about 24 days [18]. Since the number of infected machines is usually

proportional to the attack time, adversaries may have already obtained most sensitive data they

need before detection. The autonomous network defender must therefore adapt to APT adversaries

with different strategies over varying lengths of time.

1.2 Achievements and Thesis Structure

This research aims to investigate the robustness of RL-enhanced agents when defending against

multiple APT adversaries over different lengths of time. One achievement of this research is three

extended adversarial strategies that APT attackers can apply in the CAGE challenge [25]:

• The first strategy is based on a newly designed action named DefenceEvade. This action is

inspired by the ATT&CK Matrix [43] and aims to help adversaries hide their tracks during

their attacking processes.

• The second strategy is adding randomness when discovering the possible attacking path,

which tries to mislead the network defender.

• The third strategy explores the potentiality that adversaries can use the RL algorithm to

find a proper approach to execute attacks and recover from the defender’s interrupts.

This research also evaluates the performance and robustness of the network defender using the

algorithm developed in the state-of-the-art [13]. We train the updated network defender which

aims to defend against attackers using different adversarial strategies. We also investigate what

4

will happen in its learning process and why it holds advantages compared with the unmodified

network defender. According to our experiment results, the newly trained defender can successfully

mitigate the influences of different APT adversaries at a satisfactory level. Furthermore, there are

some extra technical contributions to the CAGE challenge code repository.

The rest of this dissertation is organised as follows. Chapter 2 introduces several essential

concepts about RL and APT. It also discusses related works in automated penetrating testing,

intelligent intrusion systems, and applications of hierarchical RL in network defence. A brief out-

line of the challenge environment is introduced in Chapter 3 for the experimental deployment.

Chapter 4 is about the state-of-the-art autonomous defensive algorithm, which includes the Prox-

imal Policy Optimisation algorithm [38] for deep RL, the extended curiosity module [30], and the

hierarchical architecture. Chapter 5 focuses on the performance and robustness of the algorithm

in Chapter 4. In this chapter, three kinds of novel extended adversarial strategies are designed, the

corresponding autonomous adversaries and defenders enhanced by RL are trained, and evaluations

of their performances are also presented and compared. Finally, this dissertation is concluded in

Chapter 6 with contributions and limitations that could be improved for future works.

5

Chapter 2

Literature Review

2.1 Reinforcement Learning

Reinforcement Learning, Supervised Learning, and Unsupervised Learning are three main cate-

gories of Machine Learning. Different from two other paradigms, RL has no supervisor but is

based on the delayed feedback called Reward. Its main idea combines concepts from computer

science and behavioural psychology, and tries to learn which behaviour to do next would lead to

a maximal cumulative reward. According to this definition, trial-and-error search and delayed

reward are two significant characteristics of the RL approach [44].

As shown in Figure 2.1, the RL process can be described as interactions between Agent and

Environment. At each time step t, the agent will receive an observation Ot and a scalar reward Rt

from the environment, and then execute the action At. After the environment receives the action

At, it will emit the observation Ot+1 and reward Rt+1 for the next time step.

Figure 2.1: Agent and Environment

To represent the RL problem, the environment is formally described as a Markov Decision

Process (MDP). MDP is modified from a Markov Process with rewards and decisions, and can be

defined as a five-element tuple:

M = ⟨S,A,P,R, γ⟩ (2.1)

6

where S is a finite set of states, A is a finite set of actions, P is a state transition probability matrix

with Pa
ss′ = P[St+1 = s′|St = s,At = a], R is the reward with Ra

s = E[Rt+1|St = s,At = a], and

γ ∈ [0, 1] is the discount factor which shows uncertainty about the future [40].

Another important concept of RL is Policy π which fully defines the behaviour of the agent.

To estimate the how good some state s it is under the policy π, the state-value function vπ(s) and

action-value function qπ(s, a) are defined as follow:

vπ(s) = Eπ[Gt | St = s] = Eπ[Rt+1 + γvπ(St+1) | St = s] (2.2)

qπ(s, a) = Eπ[Gt | St = s,At = a] = Eπ[Rt+1 + γqπ(St+1, At+1) | St = s,At = a] (2.3)

Therefore, RL methods aim to find the Optimal Policy π∗ which can achieve the optimal (maximal)

state-value function v∗(s) and action-value function q∗(s, a):

v∗(s) = max
π

vπ(s) (2.4)

q∗(s, a) = max
π

qπ(s, a) (2.5)

Then, the agent following the optimal policy π∗ will maximise the long-term reward, and finally

solve the RL problem.

The success of RL methods has been established in games where it has achieved performance

far beyond human capabilities. Its applications range from perfect information games (e.g., Atari

arcade games [27] and Go [42]) to imperfect information games (e.g., StarCraft II [48] and Stratego

[31]). To explore more adaptability of RL solutions, network attack and defence, which can

be regarded as a two-player game with imperfect information, is a research direction with high

potentiality.

2.1.1 Hierarchical Reinforcement Learning

Because the network environments are usually large-scale and hacker approaches have become

increasingly sophisticated, traditional RL approaches might not be sufficiently effective to explore

the action space. This problem is sometimes called ”the curse of dimensionality”. Therefore,

hierarchical RL is currently a new research direction for a realistic defence approach to handle the

high dimensionality problem in network security.

Hierarchical RL aims to divide and conquer a large-scale problem into a hierarchy of subtasks

[29]. Each subtask can be solved by a single-agent (subagent) RL approach, and the controller

of this hierarchical architecture will select actions from the optimal subagent. One interesting

algorithm in this area is named H-DQN [22]. It uses the temporal abstraction and the intrinsic

motivation to solve the insufficient exploration problem. Its hierarchical architecture contains two

layers. The upper level controller selects a goal based on the upper level policy over a longer time

span, while the lower level controller selects an action over a shorter time span. Both the upper

and lower level controller use the Deep Q-Network (DQN) algorithm, where the upper level policy

is updated based on external rewards from the environment and the lower level policy is updated

based on internal rewards from the upper level controller. This newly designed hierarchical RL

algorithm has been proven to have better performance than standard algorithms in long-horizon

7

problems [29], which might be a breakthrough for autonomous network defence against APT

adversaries.

There are many other promising algorithms in hierarchical RL for network defence. For exam-

ple, Tran et al. [46] introduced HA-DRL, a hierarchical architecture with multiple subagents, to

establish a real-like penetration testing process. HA-DRL uses an action decomposition scheme

to solve the unstable problem of DQN with a large action space. This scheme is similar to a tree

with multi-layers such that the number of subagents is also acceptable where logN subagents are

sufficient for N actions. Moreover, each subagent with a neural network does not need all state

features to find the optimal policy, and experiments show that HA-DRL also has less training time

and better convergence than a single DQN agent.

2.2 Advanced Persistent Threats

The concept of APT was first introduced by a patent in 2008 [35]. As the name describes, APT

attacks are much stronger than traditional attacks. The APT actor will not be a single person but

groups who are highly organised and usually have sufficient resources to execute attacks [10]. For

example, they work for government agents or military institutions, and could attack education, en-

ergy, transport, health, and other critical infrastructures in other countries. Moreover, behaviours

of APT attacks aim to run in the long term, which means that they keep trying to attack the spe-

cific targets and find ways to hide their track in the target network. The global median dwell-time

of APT attacks is 99 days in 2016 and still remains 24 days in 2020 [18]. Additionally, the threat

aspect of APT attacks is usually based on 0-day or N-day exploits. For example, DeputyDog uses

CVE-2014-0322 [5] to attack US military intelligence, and WannaCry ransomware uses CVE-2017-

0144 (EternalBlue) [6] which was found by Equation Group. Although activities of APT groups

might be paused due to public disclosures and patch fixes, they can update their tools to keep

ahead of network defenders, and continue to execute their long-term strategies [19].

2.2.1 Processes of APT Attacks

The process of a typical APT attack can be described by continuous steps [10], which is similar

to Intrusion Kill Chain (IKC) [15] but has more phases in its lifecycle:

(a) Reconnaissance. This is one of two preparation steps for information gathering. In this

step, attackers will investigate situations of the target and collect as much information

as possible. The information usually includes the network topology, software versions, and

personal details of staff or employees. The mainstream technique here is Social Engineering

(SE) [21]. SE does not target systems but humans who can access sensitive information.

Therefore, technical mitigation approaches are usually ineffective against this kind of at-

tacks. Furthermore, humans are usually regarded as the weakest point in information

security due to their lack of awareness and poor performance on detecting deception [21].

(b) Weaponisation. After reconnaissance, attackers analyse the gathered information (e.g.,

attacking path, software vulnerabilities, and weak password) to design the attacking plan

and tools. To make sure that the APT attack will be successful, weaponisation usually

requires multiple attack vectors and should find ways to hide tracks for future actions.

8

(c) Delivery. In this stage, attackers transfer the attack vectors to the target environment

directly or indirectly. The direct method also uses social engineering tools like phishing.

Phishing, especially spear phishing, uses the gathered personal information during recon-

naissance to increase the probability of success. After inducing people to click a link or

download an attachment in the phishing email, further exploitation will start through the

potential malware. The indirect method is to use a watering hole attack. This kind of

attacks targets websites or services that victims frequently visit or use. Because these web-

sites and services are usually trusted, watering hole attacks are more deceptive and more

efficient.

(d) Initial Access. The simplest way is to use credentials collected during reconnaissance,

which is challenging to detect since this behaviour is regarded as legitimate access. The

standard method for access usually includes Remote Exploitation and Privilege Escalation.

The attack vectors might be constructed by unauthorised credentials, software vulnerabili-

ties (including 0-day exploits and N-day exploits without patches), misconfigurations, and

malware. After privilege escalation, attackers can execute more severe malicious activities.

For example, they can deepen their access to other connected systems and install additional

backdoor programs. Therefore, this step is the key for the following attack phases.

(e) Command and Control. Because most network perimeter defences are effective, it is

hard for attackers to contact the target host directly from the external network. However,

internal connections often do not have this strict restriction. In this phase, Command and

Control (C2) channels are built between APT actors and exploited hosts, which are aimed

to enable adversaries to control the following attacking steps in the target environment.

(f) Lateral Movement. Because significant targets are heavily guarded and difficult to attack

directly, it is reasonable that the first compromised host might not be a valuable target.

Adversaries prefer to use the first host as a springboard to gain access to other hosts in the

target network. They can perform internal reconnaissance, send the gathered information

for weaponisation via the C2 channel, deliver attack payloads, and then have access to the

next host. APT attacks execute this process repeatedly until adversaries reach the highly

valuable target.

(g) Actions. This is the final step of APT attacks where adversaries take action to complete

their tasks. One typical goal is data exfiltration using the hidden C2 channel, which will be a

high risk to sensitive information (e.g., intellectual property and military intelligence). An-

other typical aim is to impact the services of the infiltrated target. For financial institutions,

attackers can forge or modify transaction data to steal funds. Considering infrastructures

like energy and transportation, APT attacks can take control of critical devices. This kind

of impact can also reduce the prestige of organisations or governments. Moreover, APT

attackers can use exploited hosts as zombies for Distributed Denial-of-Service (DDoS) at-

tacks. This leads to huge numbers of simultaneous requests to the target server such that

legitimate users will be prevented from using services.

9

2.2.2 MITRE ATT&CK Matrix

The ATT&CK Matrix [43] is established by MITRE as a globally-accessible knowledge framework

that records the known strategies and techniques of observed adversaries. This matrix defines a

general taxonomy for network offences and defences, and is a useful theoretical tool for situational

awareness and penetration testing. Because of the threat types and the range of sources for its

research basis, ATT&CK is more suitable for network attack and defence scenarios with network

boundaries. It can also provide a mapping relationship between the knowledge base and APT

attacks in the real world.

The current ATT&CK Matrix for Enterprise [26] covers 14 different tactics, 222 techniques,

and several sub-techniques. The tactics include Reconnaissance, Resource Development, Initial

Access, Execution, Persistence, Privilege Escalation, Defence Evasion, Credential Access, Discov-

ery, Lateral Movement, Collection, Command and Control, Exfiltration, and Impact [26]. Inside

each tactic, there are a series of techniques and sub-techniques that lead to different outcomes. The

framework includes technique description, platform, minimal permission required, and mitigation

approaches.

There are three necessary tactics for a successful APT attack: Initial Access, Persistence, and

Defence Evasion. Currently, most APT research [10] and reports [20] [16] [17] focus on analysis

of the delivered payloads and malicious tools. A possible reason is that these are easier to collect

and capture. However, they might not be enough to restore the entire lifecycle, and these attack

tools are often updated and changed frequently. Therefore, the ATT&CK Matrix needs to be

combined with other threat models. One is the Diamond Model of intrusion analysis [9]. This

model establishes four basic subjects in each intrusion: adversary, infrastructure, capability, and

victim. The main reason to use this model is that APT attacks in the real world usually have

specific targets, resources, and capabilities. Identifying this information will help defenders know

the current attack phase and intention and then complete the attribution analysis.

2.3 Autonomous Network Defence

In recent years, network defence has been an essential mechanism for large enterprises, organ-

isations, and governments. Network defence can be divided into three categories: prevention,

detection, and reaction. In terms of prevention, penetration testing [49] describes authorised at-

tacks that aim to evaluate the defence system by simulating attacks that malicious attackers will

likely try. The white-hacker team will report problems that happen in the penetration testing pro-

cess to prevent potential threats in the real working environment. The detection part of network

defence is usually based on intrusion detection systems [7], which are designed to monitor the

events occurring in the computer networks and systems. Any intrusion behaviours are reported

to administrators or collected by the security information and event management (SIEM) system.

However, the current problem of network defence is that manual prevention and detection can be

inefficient and ineffective. One reason is that the number and sophistication of network offences

are continually growing. Another reason is the shortage of skilled workers since information secu-

rity is complex and difficult to establish systematically [14]. Thus, autonomous network defence

has become a new direction in academic and industrial areas.

10

2.3.1 Automated Penetration Testing

The modeling approaches to penetration testing are determined by how much ethical hackers know

about the target environment. If all network and system configurations in the environment are

available to attackers, it is easy to build an attack graph [4] for the target and then find an optimal

attack path by traditional planning algorithms. However, this modeling approach is often not

practical since attackers usually cannot have the complete knowledge of the target environment.

Another more abstract approach is to use an MDP model, which focuses on states and transition

probabilities. Unfortunately, this approach might still be ineffective in real-world applications

because it requires essential prior knowledge about the probability of successful attacks, which is

hard to measure in a complicated and varied environment.

A more realistic approach is using a Partially Observable Markov Decision Process (POMDP)

[33] [34] to model penetration testing. This method does not need complete knowledge of config-

urations and prior knowledge about probabilities of successful attacks. Its main advantage is the

capability to reason about the knowledge gained from the scanning actions during the penetration

test. Experiments in [33] show that this method is able to find attacks on a single machine but

cannot scale due to computational problems when the state space grows.

Recent research [39] [14] [46] prefers to use RL algorithms to solve the automated penetration

testing as an MDP problem with complete knowledge or sufficient prior knowledge. This is a

trade-off between the modeling accuracy and the solution computability. Although the benefit of

RL methods is that it has more robust capabilities to solve large-scale problems, it is still a problem

to apply these algorithms in complex network scenarios. A major obstacle is the complexity of

action space facing different situations. The experiments in [39] demonstrate that the size of the

action space grows exponentially even as the number of hosts increases in a relatively small range.

2.3.2 Intelligent Intrusion Detection Systems

Intrusion detection systems are used to monitor and audit the behaviours in networks or systems.

According to the audited data type, intrusion detection systems can be classified into host-based

and network-based [7]. Host-based intrusion detection systems compare and analyse significant

system files or configurations to detect any suspicious activities, while network-based intrusion

detection systems monitor network traffic and analyse traffic data.

For intelligent intrusion detection systems enhanced by RL, the system call sequence data

[50] can be used in an MDP to build a state-value prediction model, which can predict anomaly

probabilities. Network log files [11] can also be a breakthrough since finding valuable log files

with malicious behaviors is challenging. One solution is to give rewards when the log file actually

contains any attack signatures such that the system will automatically select more valuable log files

for analysis and tracing. Lopez-Martin et al. [24] tested four algorithm variants with two labeled

intrusion datasets, and found that RL solutions, especially Double Deep Q-Network (DDQN)

[47], can highly reduce the prediction time. Such that RL methods can be simple and efficient

approaches in current environments where rapid responses are necessary. However, this research

[24] replaced the interactive environment with a sampling function of intrusions, which is less

realistic than other approaches in the literature.

11

Chapter 3

The CAGE Challenge in CybORG

Environment

3.1 Scenario and Environment

The CybORG environment [2] is an experimental platform designed to support Autonomous Cyber

Operations (ACO) research in Artificial Intelligence (AI) for Security. Its focus is not on data-

driven intrusion detection approaches but on finding an optimal strategy to defend adversaries

inside the network at a high level. It provides not only abstract actions in its simulator but also

actual interactions with virtual machines built on Amazon Web Services (AWS), which increases

its scalability and reliability.

The Cyber Autonomy Gym for Experimentation (CAGE) challenge [1] is embedded in the

CybORG environment, which is under the scenario that one nation called Guilder keeps trying to

perform APT attacks at military factories of another nation called Florin. The challenge aims to

design an autonomous defence agent that can prevent significant operational servers from being

compromised and keep the entire system runnable.

Configurations of the scenario are defined in the corresponding YAML file Scenario1b.yaml

and can be modified for customised requirements. Most important information about hosts and

servers is also specified in the scenario file, which includes operating system information (Windows

or Linux), interfaces, users, groups, files, processes, sessions, and services. All these data types

are instanced when the hosts are created.

The network topology under this predefined scenario will not be changed during this challenge.

As illustrated in Figure 3.1, there are three subnets and thirteen hosts inside the network environ-

ment. Subnet 1 contains five user hosts. These hosts can be accessed through external networks

and are not as critical as the other hosts inside the network. Subnet 2 has three enterprise servers

used to support user hosts’ activities in Subnet 1. Inside Subnet 3, there are three operational

hosts and one operational server which is the target of adversaries. The Network Access Control

List (NACL) allows all traffic in and out of Subnet 1 for users and Subnet 2 for enterprises. How-

ever, it denies the traffic from Subnet 1 to Subnet 3, which means all five hosts in the User subnet

cannot directly access servers or hosts in the Operational subnet.

12

Figure 3.1: The CAGE Challenge Network Topology [25]

3.2 Agents and Actions

The CAGE challenge has three kinds of agents: blue, green, and red. Every agent will select and

perform an action for each step in one episode. The execution order is that the blue agent receives

all available observations from the last step and uses the chosen defensive action. Then, the green

agent executes the benign behaviours, and finally the red agent performs the malicious activity

[25]. For each action, there will be a reward value usually based on the significance of its influence

on hosts and the entire system.

3.2.1 Red Agents as Adversaries

There are two red agents based on different attacking rules. The first one is named B lineAgent, a

powerful adversary who already knows the complete network topology information and the shortest

attacking path to the operational server. The other red agent is MeanderAgent, which will execute

a breadth first search on all known hosts until it reaches the final target. This adversary needs to

discover helpful information during exploration, which is slower and less stealthy but more general

than B lineAgent. Both red agents share the same action space, which contains five high-level

actions, one extra Sleep action, and several concrete sub-actions that will be used to support the

corresponding high-level action.

The first high-level action is DiscoverRemoteSystems. With a subnet as input, the challenge

simulator will execute a PingSweep sub-action and return all active IP addresses on this subnet.

The second action is DiscoverNetworkServices. The related underline sub-action is Portscan to

identify all available services by their port numbers on a target IP address. Both discovery actions

can be classified into Reconnaissance and Lateral Movement in the APT lifecycle.

In the next stage, attack vectors will be designed according to the discovered services and then

delivered and deployed later. The ExploitRemoteService action is provided with five low-level

attacking options. In order of priority from highest to lowest, they are HTTPSRFI, HTTPRFI,

EternalBlue, BlueKeep, and SSHBruteForce. This rate is hard-coded in the simulator, and there is

a 75% chance to select the highest available option while a 25% chance to select options randomly.

The next action is PrivilegeEscalate. This action is only allowed when the target host or server

has already been exploited successfully. According to the operating system type, the Juicy Potato

exploit will be used for Windows, while the V4L2 Kernel Exploit will be selected for Linux. After

13

privilege escalation, adversaries are considered to have gained administrator access. Meanwhile,

blue agents will receive continuously negative rewards (-0.1 for the user and operational hosts,

and -1 for the enterprise and operational servers) in each time step until the compromised host or

server is restored to its original state. Finally, if red agents have root privilege on the operational

server, they will continually execute Impact actions that could interrupt services. Since red agents

have completed their tasks, blue agents will get a -10 reward whenever a Impact action is executed.

3.2.2 Green Agents as Normal Users

The green agent is designed to perform benign scanning actions. One scanning action is Green-

PingSweep, which discovers other hosts on the same subnet. Another action is GreenPortScan

which scans all open services on the target host. Except for these two actions, the green agent

will not exploit any host, which is the main difference from the red agent. These actions and the

corresponding observations can be determined as environmental noise such that the blue agent

will not believe that all actions come from the red agent. However, the green agent only performs

the Sleep action in the CAGE challenge scenario.

3.2.3 Blue Agents as Defenders

The blue agent acts as the defender in the network. There are five abstract actions, one extra

Sleep action, and several concrete actions for the blue agent to select. The first available action

is Monitor, where the blue agent will collect all possible malicious activities based on suspicious

network connections and processes. Moreover, Monitor is a passive action which means it will

always be executed when other actions (including the Sleep action) are selected in the current

step. The second action is Analyse, where the blue agent will use tools like DensityScout and

SigCheck to detect whether malware exists on the given host. Therefore, these two actions enable

intrusion detection at the network and host levels.

There are two other abstract actions that the blue agent will use when dealing with the com-

promised hosts. One action is named Remove. The blue agent can remove the detected suspicious

processes and files from the target host. In the simulator, this action will remove the user-level

shell by killing it as a process, but it cannot remove privileged shells since these shells are consid-

ered to exist permanently [25]. To remove a privileged shell, another action named Restore should

be used. Through this action, the blue agent will recover the target host from a benign state

which is previously backed up. However, there exists punishment for this more powerful action

since it will cause network and service disruptions, which undermines one of the defensive goals.

Therefore, the blue agent will receive a -1 reward for executing the restore action each time.

In the extension of the CAGE challenge, the blue agent has an advanced action named Mis-

inform, which can deploy decoy services on the target host. Its working principle is similar to a

virtual honeypot [32] such that green agents who are as normal users will not access the decoy

services. Any other access will be regarded as malicious activities created by red agents as adver-

saries. If the red agent exploits the decoy service, its following actions will not be successful unless

another non-decoy service is chosen to exploit. The Misinform action delays the time adversaries

will take to find valuable hosts, thus improving the chances of attacks being detected and handled.

14

3.3 States and Observations

Figure 3.2: Host States [25]

The entire state transition process is illustrated in Figure 3.2. Each circle represents a specific

state of the target host. Circles in blue show that the corresponding host has not been exploited.

The yellow circle indicates that the host has been exploited and adversaries already have user

access successfully. The red one denotes the privilege escalation is finished, and the administrator

access has been achieved by attackers. Red and blue arrows are actions that can be executed by

red and blue agents, as explained in Section 3.2.

To check whether the state transition is successful, observations as results should be available

for both red and blue agents. For the initial state, blue agents can access the state information

of the entire network, and red agents can see the information about the start point User0 since

it has already been privileged during initialisation. Additionally, blue agents will never recover

this host, which aims to keep the attacking process persistent and indicate the seriousness when

adversaries already have phished credentials in the environment [25].

For the same action, red and blue agents usually have different observations. Considering a

successful DiscoverRemoteSystems action, red agents will receive a list of IP addresses in the target

subnet. Although blue agents keep monitoring the entire network, no tools are given to detect this

action, such that their received observation is unknown. Situations will change when performing

DiscoverNetworkServices where both red and blue agents can observe the connections between the

sender and receiver, their IP addresses, and scanned port numbers. For the ExploitRemoteService

action, connections are still in both-side observations, but red agents will get the system and user

information of the attacked host. Moreover, there will be a 5% chance that this malicious action

cannot be observed by blue agents. After the PrivilegeEscalate action, red agents can get further

information about the target host and its connected systems, while blue agents cannot detect this

activity. Fortunately, blue agents can use the Analyse action to find suspicious files in the detected

host. After analysing, blue agents can use the Remove or Restore action to defend against attacks.

15

Chapter 4

Autonomous Network Defence

using Reinforcement Learning

4.1 Proximal Policy Optimisation

Previous research in network defence areas [39] [14] [46] preferred to use the DQN algorithm as

the core RL method. The DQN algorithm is a value-based method that uses Q-value functions to

estimate the goodness of the selected action under a specific state. The possible reason for using

this method is that it is suitable for the discrete action space in the network defence environment

(e.g., CybORG) and can be a baseline for this new direction. The problem is that value-based

methods are unsuitable for high-dimensional action spaces. The DQN algorithm tries to mitigate

this problem by using deep neural network to approximate the Q-value function [12]. However,

its efficiency is still not satisfactory for large-scale action spaces, and it is relatively difficult to be

stable and unsuitable for learning stochastic policies. Therefore, policy-based approaches might

be a better solution

The size of the blue action space is 54 in CAGE challenge version 1 and 158 in challenge version

2, and the size of the red action space is 69 in version 1 and 888 in version 2. Moreover, observation

spaces in both versions are also huge, with lengths over 11,000. Under this scenario, policy-based

RL (e.g., Policy Gradient) might have better convergence properties and can be effective in such

a high-dimensional action space [41]. However, policy gradient methods still have problems since

they typically converge to a local optimum, and evaluating a policy is inefficient because of high

gradient variance [41]. The potential solution is to combine the benefits of both value-based and

policy-based methods, which is called Actor-Critic. In this hybrid approach, the policy-based

actor controls the agent’s behaviours, and the value-based critic evaluates the goodness of selected

actions.

Proximal Policy Optimisation (PPO) [38] is a powerful Actor-Critic method that has become

the default algorithm choice in many RL projects [36]. Its advantages include more straightforward

implementation, simpler tuning, and better performance than most algorithms. The main idea of

PPO is to solve efficiency and reliability problems in Trust Region Policy Optimisation (TRPO)

[37]. TRPO tried to solve large policy change problems in policy gradient methods by designing

16

a trust region that limits the distance between old and new policies via Kullback–Leibler (KL)

divergence. By denoting the probability ratio between old and new policies as

rt(θ) =
πθ(at|st)
πθold(at|st)

(4.1)

the objective function of TRPO can be represented as

LTRPO(θ) = Êt

[
rt(θ)Ât

]
(4.2)

where Ât is the estimated advantage. TRPO aims to maximise the objective function in Equation

4.2 but not exceed the trust region with the parameter δ:

Êt

[
KL[πθold(·|st), πθ(·|st)]

]
≤ δ (4.3)

However, TRPO is relatively complicated and it is expensive to implement the constraint [38].

Therefore, PPO imports a clipping function to simplify the algorithm and keep a similar perfor-

mance. It enforces the probability ratio rt(θ) fall inside the interval [1 − ϵ, 1 + ϵ] where ϵ is a

hyperparameter. Then, the PPO objective function is

LCLIP (θ) = Êt

[
min

(
rt(θ)Ât, clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Ât

)]
(4.4)

which causes that the advantage function will be clipped if rt(θ) falls outside the range [1−ϵ, 1+ϵ].

As illustrated in Figure 4.1, the probability ratio rt(θ) is clipped at 1+ϵ (the left sub-figure) or 1−ϵ

(the right sub-figure), which is determined by whether the values of the advantage function are

positive or negative. For this reason, PPO with clipped surrogate objective will reduce occurrences

of large policy updates.

Figure 4.1: Clipped Surrogate Objective Function

Moreover, PPO uses the minibatch stochastic gradient descent (SGD) to make its computations

more tractable and efficient. In conclusion, the pseudocode for PPO is presented in Algorithm 1.

The code implementation of the standard PPO algorithm is created by RLLib [23], and it is the

version used in this research.

17

Algorithm 1 PPO with Clipped Surrogate Objective Function

1: Input: initial policy parameter θ0, and initial clipping hyperparameter ϵ

2: for k = 0, 1, 2, . . . do

3: Collect set of partial trajectories Dk by running policy πθ = π(θk) in the environment

4: Estimate advantages Âπk
t based on the current value function

5: Update the policy by maximising the objective function

θk+1 = argmax
θ

LCLIP
θk

(θ)

by taking K steps of minibatch SGD, where

LCLIP
θk

(θ) = Êt

[
min

(
rt(θ)Â

πk
t , clip

(
rt(θ), 1− ϵ, 1 + ϵ

)
Âπk

t

)]
6: end for

4.2 Intrinsic Curiosity Module

For training blue agents, some other challenges need to be addressed. The CybORG is a sparse

reward environment where blue agents do not always receive rewards after actions. The rewards

from the environment to blue agents are decided by both red and blue actions. When considering

the red action space, the DiscoverRemoteSystems, DiscoverNetworkServices, and ExploitRemote-

Service do not have direct punishments (negative reward) for the blue agent. The Impact action

will only be executed after the target operational server has been privileged, which is still rare

in the entire process. The significant red action that always gives punishments to blue agents is

PrivilegeEscalate, but it might not be enough for training. For the blue action space, the situation

is similar. Most actions, including Monitor, Analyse, Remove, and Misinform, do not have rewards

after their executions. The Restore is even a deceptive action that will directly give a negative

reward to blue agents though it gives benefits in the long term. Therefore, sparse rewards are a

significant challenge in the CybORG environment.

Traditional RL algorithms choose actions by mimicking the reward system in human psy-

chology, and this makes the training process difficult in a sparse reward environment. However,

humans can still keep learning in such situations. Recent research that tries to overcome sparse

rewards can be divided into three categories: Reward Shaping [28], Curriculum Learning [8], and

Hierarchical Reinforcement Learning [22].

Curiosity is one research direction that belongs to Reward Shaping. It imports an internal

reward type that guides agents explore the environment and learn more knowledge that might be

useful in future interactions. Pathak et al. [30] categorised observation sources into three types:

(a) can be controlled by the current agent; (b) cannot be controlled by the current agent but

have influences; (c) cannot be controlled by the current agent and have no impact (i.e., random

environmental noise). They also found that a good curiosity feature space should model (a) and

(b) and are unaffected by (c). The CybORG environment perfectly meets these requirements: the

blue agent can control its actions but cannot control the actions from the red agent, and the green

agent’s Sleep actions do not have influences on the blue agent’s decisions. This indicates that

18

the Intrinsic Curiosity Module (ICM) might be helpful here. To apply the ICM for the CAGE

challenge, its implementation from RLLib [23] is used for training blue agents.

After adding the ICM into interactions between the agent and environment, one state and one

action will lead to two rewards ret and rit at time step t: ret is given by the environment while rit

is created by the curiosity. This intrinsic reward signal is generated by

rit =
η

2
|| ϕ̂(st+1)− ϕ(st+1) || 22 (4.5)

which is represented as a prediction error between ϕ̂(st+1) and ϕ(st+1). The representation ϕ̂(st+1)

is the output of a forward model with action at and feature ϕ(st). More specifically, features ϕ(st)

and ϕ(st+1) are encoded by the ICM through two separate neural networks using states st and

st+1. According to this definition, the agent will be more willing to explore unknown states when

the prediction error is larger. However, there exists unrelated information in the state space which

will disrupt agent decisions. To mitigate this problem, the algorithm uses an inverse model to

estimate an action ât using features ϕ(st) and ϕ(st+1). If at and ât is related, then the used

information is also related. To conclude, the entire working process is illustrated in Figure 4.2.

Figure 4.2: Intrinsic Curiosity Module

4.3 Hierarchical Architecture

As explained in Section 4.2, the simulated CybORG environment has sparse rewards for training

blue agents. Moreover, several red agents act as APT adversaries and perform persistent be-

haviours in the environment. The challenge evaluation will test the algorithm performance up to

100 steps in each episode. According to previous research, hierarchical RL can be a mitigation

approach to deal with the sparse reward [22] and the long-horizon [29] problems, which indicates

that hierarchical RL methods should work well here.

19

The idea of Options was proposed by Sutton et al. in 1999 [45], where the Options can be

regarded as temporal abstractions of actions. Because the challenge assumes that there is only

one kind of red agent in every episode, the entire policy can be divided into several sub-policies

in different temporal processes. Therefore, the hierarchical architecture developed for the CAGE

challenge in CybORG environment contains several lower-level blue subagents and an upper-level

controller. For each red agent, including the provided agents in Subsection 3.2.1 and advanced

agents in Section 5.1, a corresponding blue subagent will be trained using the PPO with ICM

algorithm. During the blue subagent training processes, the environment and agents are reset

to their initial states after each episode until the total training time steps are reached or the

performance has converged. For the agent controller, it aims to distinguish which kind of red

agents it currently defends. To achieve this goal, the controller will load all trained blue subagents

and randomly select a subagent to defend against the current red agent in one episode. Then, the

controller will perform the action provided by the blue subagent in each time step. This indicates

that observations and rewards the controller will receive are results of subagents’ actions. Similarly,

the PPO algorithm is selected as the training method for the controller. Finally, the controller will

distinguish the type of adversary and select the most suitable subagent to minimise the impacts

of these APT adversaries. This hierarchical model can be represented in Figure 4.3.

Figure 4.3: Hierarchical Architecture

20

Chapter 5

Extensions and Experiments

5.1 Extended Adversarial Strategies

From the ATT&CK Matrix [43], adversaries select different kinds of techniques and vulnerabilities

to achieve their attacking goals. To investigate the effectiveness and robustness of the algorithm

designed in Chapter 4, we extend the CAGE challenge by implementing a new action inspired by

the ATT&CK Matrix, randomising exploration paths, and training several red agents against two

heuristic blue agents in this section.

5.1.1 Defence Evasion

The CAGE challenge developers [1] use the ATT&CK Matrix tactics and techniques to design

abstract and concrete actions in their red action space. For example, the DiscoverNetworkServices

action is the ATT&CK Technique T1210, and the PrivilegeEscalate action is the ATT&CK Tactic

TA0004. The newly implemented actionDefenceEvade is inspired by the ATT&CK Tactic TA0005,

which aims to avoid detection during the compromising process. Defence evasion is a necessary

step in the lifecycle of APT attacks. Adversaries can use this action in the final phase to hide

their attacking tracks and maintain potential accesses in the future, which can be regarded as the

basis of the Persistent property of typical APT attacks.

This DefenceEvade action will be added into the B lineAgent to establish another red agent

with a more advanced strategy, which is named CovertAgent. This agent will perform the defence

evasion action immediately after it gets the administrator access to the target machine except for

the operational server (instead preferring to execute the Impact action for the operational server).

This newly added action will use a hostname as its input and only gives the success or failure

observation for the red agent.

Similar to the other red actions, the DefenceEvade action has one abstract action and one

concrete action called HideArtifacts (ATT&CK Technique T1564). The abstract action will detect

the existence of the relevant session. The concrete action will be performed only if the relevant

session exists; otherwise, the abstract action will return an observation that this action failed.

Therefore, if the current machine is restored by blue agents promptly after the privilege escalation,

this defence evasion action will not be successful since the necessary session has been removed.

21

The HideArtifacts sub-action will hide artifacts (e.g., sessions, processes, and files) associated with

the attacking tracks to evade the detection from the blue agent. For instance, the blue agent will

no longer obtain valuable observations from the Analyse action after the DefenceEvade action.

Moreover, the DefenceEvade action will set a flag to decrease the exploit detection rate from

0.95 to 0.25 to help adversaries covertly exploit the compromised machine again. This flag can

only be unset by the Restore action from the blue agent, which aims to show the power of this

hidden behaviour and the significance of the credential access (ATT&CK Technique T1212). When

considering the action rewards, this DefenceEvade action inherits the continuous reward from the

PrivilegeEscalate action because of the implementation method. The red agent will receive an

instant reward for this action as well due to its important influence and the compensation for an

extra step compared with the original B lineAgent.

Finally, the CovertAgent also has the recovery function such that it can find the correct position

to attack again if it fails in an action (including the added DefenceEvade action) or is interrupted

by the blue agent. The implementation method is to use a dictionary data structure to cache the

step number and the selected action. If the red agent needs to recover, there is an array to guide

which step it should jump to in each of the different attack phases.

5.1.2 Randomised Attacking Paths

In addition to adding new actions, we also investigate potential flaws of existing agents to improve

their performance. The main problem is that random elements are not enough in the environment,

which has a significant impact on the robustness of the designed algorithm. One source of non-

determinism is the intrusion detection rate which is designed to be 0.95. However, its goal is to

ensure that the red agent can eventually access the operational server to complete its APT attacks

if one episode has enough steps for the red agent. Another non-determinism occurs when choosing

the most valuable exploit vulnerability. Adversaries will have a 25% chance to select a random

exploit approach rather than the one with the highest priority. The weights of the provided exploit

options are chosen based on how common the corresponding vulnerable service was in the network;

therefore, frequently changing their rates might not be an acceptable option.

A significant deficiency in randomness can be found in the fixed attacking paths after analysing

the action histories of the two red agents: B lineAgent and MeanderAgent. Since the B lineAgent

has complete knowledge of the network topology, its attacking path is shortest. This assumption

is reasonable since there will exist at least one optimal path in different network structures, so

behaviours of the B lineAgent should not be changed. However, the MeanderAgent explores the

network environment using breadth first search, which also leads to a fixed attacking path in a

static network topology. Therefore, the second adversarial strategy we design in this thesis is to

use randomised attacking paths in the environment, and the red agent who will apply this strategy

is named RandomAgent.

The essential problem is that red actions are inherently causally-linked. One action should use

the information from the observation result of previous actions, or one action is the prerequisite for

the following action. For example, the ExploitRemoteService should use the IP address discovered

by the DiscoverRemoteSystems and port numbers scanned by the DiscoverNetworkServices, and

each machine can only be privilege escalated after it has been exploited. Additionally, the NACL

22

should also be considered such that devices in the User Subnet cannot directly access machines in

the Operational Subnet. In the action implementation, these illogical actions will be considered

as InvalidAction or their performing results will always be unsuccessful. Therefore, keeping the

correct order of each APT attack lifecycle is necessary.

The approach that our RandomAgent applies is to shuffle the choice of target machines but

not break the inherently interdependent attacking chain at each machine. To be specific, after

the port scanning behaviour on one host, the red agent might choose to privilege escalate another

exploited device. Furthermore, although the RandomAgent still uses a breadth first search of the

network, the order in each layer is also shuffled to implement randomness and mislead the blue

agent. Finally, the RandomAgent also inherits the recovery function from the MeanderAgent to

keep the attacking process alive.

5.1.3 Autonomous Network Attackers

Although the two originally provided red agents (B lineAgent and MeanderAgent) and two our

newly designed red agents (CovertAgent and RandomAgent) are heuristic, it is also possible to

use the algorithm in Chapter 4 to train the autonomous red agents. The CybORG environment

provides two blue agents used to test the functionality of Remove and Restore actions: BlueReac-

tRemoveAgent and BlueReactRestoreAgent. Therefore, two autonomous APT adversaries can be

trained against the corresponding blue agent.

The challenge should be reversed such that there already exists a blue agent in the environment,

and the trained red agent will be the challenger to achieve higher rewards. However, similar to

training blue agents, rewards for red agents are also sparse in the environment. The red action

space has only two actions that will provide the positive reward, which are PrivilegeEscalate

and Impact. As explained in Subsection 5.1.2, both actions should use the information collected

in previous actions or meet some specific prerequisites. If the red agent breaks the inherently

dependent attacking chain, it will receive a -0.1 reward for each invalid action. Moreover, inside

the implementation of the Impact action, this action can only be successful when it is used on

the operational server. Therefore, the trained red agent needs to explore valid actions without

rewards before they can execute two actions with rewards, and it is necessary to find a suitable

position to recover if it is interrupted by blue agents.

5.2 Training Details

5.2.1 Hardware and Software Environment

All experiments were conducted on a personal laptop which has a 12th Gen Intel Core i9-12900H

Process and 32 GB of RAM, where all computation tasks were finished by the CPU without any

GPU acceleration. The running environment is the Ubuntu 20.04 operating system built on Win-

dows Subsystem for Linux version 2 (WSL2). The challenge environment is cage-challenge-1

with several modifications for bug fixes. All RL algorithms are implemented by the open source

library RLLib in Python3 (3.8.10). More details about the environment and related dependencies

can be accessed through the given GitHub Code Repository in Appendix A.

23

5.2.2 Training Settings

The training procedure assumes that each red agent will exist in the environment for at least 100

time steps in one episode before being cleaned by blue agents. For the training process, there

will be 10 million time steps for blue agents and 20 million for red agents, which appears to be a

sufficient time period for the agents’ training to converge. Moreover, there are several differences

between each training procedure. When training red agents, the agents select actions from the

original red action space, which means that the DefenceEvade action is not included. When

training blue agents, the algorithm PPO with ICM will be used for each subagent, while training

hierarchy controller will only use the PPO algorithm.

Each training process needs a selection of various hyperparameter values. The hyperparameters

for the B lineAgent and MeanderAgent are selected after a grid search [13], and the CovertAgent

and RandomAgent use the same values since they are modified from the original agents. The

values for training red agents are similar but encourage more chances to explore the red action

space. The controller training prefers to use the default values provided by the PPO algorithm.

Please see Appendix B for the detailed hyperparameter values.

5.3 Evaluation and Comparison

5.3.1 Performance of Trained Red Agents

The red agent learning processes are shown in Figure 5.1 with the help of Tensorboard. It can be

seen that there are several stages in their learning processes that need to be explained with the

assistance of their action histories.

Figure 5.1: Training Processes for Red Agents

There are two planes that divide the entire learning process into four stages. In the first

increasing phase, two red agents will learn what kinds of actions are valid, and they must find the

logical chain from discovery and exploitation to privilege escalation. The next is a plain phase

which indicates that red agents are defended by the corresponding blue agent using the Remove or

Restore action. During this phase, more exploration over the action space should be encouraged;

otherwise, the red agent will converge into a low-level local optimum. In the second increasing

stage, the red agents find a way to recover after the Remove or Restore action because these actions

will be executed when the malicious activities are detected by the Monitor action. The last stage

24

is when two red agents and the corresponding blue agent fall into a defence-recovery circle, so the

maximal time step value limits their rewards. Figure 5.2 shows the cumulative rewards of two

autonomous red agents under different total time steps.

Figure 5.2: Performances of Our Trained Red Agents against the Remove and Restore Defenders

Moreover, since the Restore action is more powerful than the Remove action, the trained red

RestoreAgent will spend more time steps learning the recovery method from the defending action.

Meanwhile, the trained RestoreAgent can also be used to defend against the blue agent operating

the Remove action with higher performance but not vice versa, as shown in Table 5.1.

Table 5.1: Performance of Each Trained Red Agent after 100 Time Steps

Blue Agent RemoveAgent RestoreAgent

BlueRemoveAgent 168.886 182.956

BlueRestoreAgent 149.180 181.619

5.3.2 Performance of Trained Blue Agents

The evaluation uses the provided method in the CybORG environment with a few modifications.

To guarantee the accuracy of evaluation results, each experiment is run over 1000 episodes for each

time step selection. Before evaluating the performance of the trained blue agent, the capability

of the extended adversarial strategies should be tested as the baseline. The first experiment is to

attack the environment protected by the vanilla PPO algorithm, which is already included in the

CAGE challenge. The involved red agents are B lineAgent, CovertAgent, MeanderAgent, Rando-

mAgent, and SleepAgent. The two red trained agents will not participate due to compatibility

issues in the CybORG environment. The results for the first experiment are shown in Figure 5.3.

We find that the MeanderAgent and the RandomAgent receive similar rewards in every stage.

This result indicates that randomised behaviours without breaking the inherently dependent at-

tacking chain does not influence the performance compared with using the breadth first search

method. Furthermore, the CovertAgent receives fewer rewards (i.e., lower performance) than the

25

Figure 5.3: Performance of Red Agents against the Vanilla PPO Defender

B lineAgent. One potential reason is that CovertAgent needs to perform an extra action De-

fenceEvade after it successfully privilege escalates a machine, which will delay its executions of

other actions with rewards. Finally, four red agents (except the SleepAgent) can effectively impact

the operational server in almost every episode after checking their printed action histories.

The second experiment is completed with the trained hierarchical defender provided by Min-

drake, a team who participated the CAGE challenge [13]. This defender consists of one controller

and two subagent defenders for the B lineAgent and MeanderAgent. However, this defender has no

knowledge about the red agents with extended strategies. Therefore, it is necessary to investigate

the performance of this unmodified defender against the two known and two unknown red agents.

The results of this experiment are illustrated in Figure 5.4.

Figure 5.4: Performance of Red Agents against the Unmodified Hierarchical Defender

The results indicate that this trained defender can effectively defend against two known red

agents: B lineAgent and MeanderAgent. Their received rewards are limited to a range of around

10 which demonstrates that the operational server will never be compromised by these two red

agents. However, the extended adversarial strategies work well in this protected environment. The

26

cumulative rewards for the RandomAgent reach about 50 after 100 time steps. In its action history,

the RandomAgent has a 5‰ (5 in 1000) probability that it can successfully impact the operational

server. Furthermore, the CovertAgent has about 80 cumulative reward after 100 time steps and

has more records for the Impact action (higher probability) in its action history. According to the

performance of the CovertAgent, the defence evasion strategy with artifact hiding is more lethal

for the unmodified defender who prefers to use Misinform greedily during its network defence

process. Therefore, training an updated hierarchical defender is necessary for defending against

the two red agents with extended adversarial strategies. With the help of Tensorboard, the blue

subagents’ training processes are shown in Figure 5.5 (deep blue for the B lineAgent, red for the

CovertAgent, orange for the MeanderAgent, and light blue for the RandomAgent), and the training

process of the controller for four red agents are displayed in Figure 5.6.

Figure 5.5: Training Processes for Blue Subagents

Figure 5.6: Training Process for Blue Controller

These training processes demonstrate that all defenders converge in performance after 2 million

steps, which costs around one and a half hours using the hardware and software environment given

in Subsection 5.2.1. To be specific, the defenders for B lineAgent and MenaderAgent converge to a

value of approximately 10 for the reward, while the defenders for CovertAgent and RandomAgent

and the defence controller converge to approximately 20.

Figure 5.7 shows the performance of five red agents against our updated hierarchical defender.

The received rewards for the B lineAgent and MeanderAgent have few difference from the unup-

dated one. The RandomAgent is expected to have a similar performance to the MeanderAgent,

27

but its randomised attacking paths might increase the difficulty of learning a general defending

policy, and this defender might converge to a local optimum. After investigating its action history,

there is a 1‰ (1 in 1000) chances that the RandomAgent can impact the operational server in

100 time steps, which shows that the updated defender is better than the unmodified one.

The CovertAgent is a special case whose received rewards are maintained at around 18. After

investigating its action history, the trained defender greedily uses the Remove action in the first

stage rather than the Misinform action, which is the main difference from defenders against the

other red agents. Moreover, this hierarchical defender does not have the capability to prevent the

CovertAgent from reaching and privilege escalating the operational server. A possible explanation

is the newly designed DefenceEvade action exposes less information to the defender. Fortunately,

the defender successfully learns to restore the operational server before each time the red agent

tries to impact it, which is the second stage of the defender’s behaviours. Then, the red agent will

exploit the operational server again to continue this kind of iterated strategy, and this is the main

reason for staying at a value of 18 for the reward.

Figure 5.7: Performance of Red Agents against Updated Hierarchical Defender

Finally, Table 5.2 concludes the comparison between three trained blue agents who will defend

against four different red agents. The hierarchical blue agent using PPO with ICM algorithm does

better than using the vanilla PPO algorithm. Moreover, the blue agent using this newly designed

algorithm can adapt to red agents with extended adversarial strategies, and its final score is at a

higher level. Therefore, this algorithm successfully defends against multiple APT adversaries over

different lengths of time, such that it can provide a more generalised defensive capability with

great effectiveness and robustness.

Table 5.2: Performance of Each Blue Agent after 100 Time Steps

Blue Agent B lineAgent CovertAgent MeanderAgent RandomAgent Avg.

Vanilla PPO -503.439 -436.970 -261.677 -244.698 -368.585

Hierarchical-Unmodified -10.542 -76.914 -6.175 -52.363 -36.980

Hierarchical-Updated -10.844 -19.115 -5.745 -17.323 -13.613

28

Chapter 6

Discussion and Conclusion

6.1 Contributions

This research aims to investigate the robustness of hierarchical RL enhanced agents which can

autonomously defend different kinds of APT adversaries in a competitive network environment.

To achieve this goal, this complicated problem is broken into three sub-directions which we explore:

(a) What are the types of adversarial strategies APT attackers might employ?

(b) How can the defender defend against a single ATP attacker?

(c) How general is the resulting algorithm when it is used to protect against different attackers?

To answer question (a), the entire lifecycle of APT attacks is surveyed through the ATT&CK

Matrix. After comparing with the already provided red actions, the abstract action DefenceEvade

and concrete action HideArtifacts serve as a supplement to formulate a more advanced adversarial

strategy, which is used to design the CovertAgent. Moreover, some shortcomings about randomness

are found in the provided red agents B lineAgent and MeanderAgent, so the randomised attacking

path is the strategy that the RandomAgent will apply. Finally, the designed algorithm is also used

to train autonomous red agents for the potential applications of RL methods in network attacking.

These trained red agents autonomously attack the environment protected by blue agents who will

perform Remove and Restore actions when finding malicious activities.

Before training the corresponding blue agents, the capabilities of these red agents with extended

adversarial strategies is tested. The evaluation results for varying lengths of time are shown in

Figure 5.2, Figure 5.3, and Figure 5.4, and each experiment is executed over 1000 episodes to guar-

antee accuracy. The code implementations are shown in Appendix A, along with several additional

technical contributions about bugs fixed and issues raised on the corresponding CAGE challenge

repositories. The hyperparameter settings for autonomous red agents are listed in Appendix B.1.

For questions (b) and (c), the evaluation results of the blue subagents and controller provide

a reliable answer. Each blue subagent is trained to defend against one specific red agent with its

own adversarial strategy. As shown in Figure 5.5, all defenders converged into an acceptable level

of performance after carefully tuning the hyperparameters, as listed in Appendix B.2. Moreover,

the trained controller can successfully distinguish the type of red agent it currently defends against

29

and then will choose the correct actions to mitigate the APT attack. Therefore, as illustrated in

Table 5.2, the defender using the hierarchical RL algorithm overcomes the overfitting problem in

defending against one particular adversarial strategy and provides a high and more generalised

performance for autonomous network defence.

6.2 Limitations and Future Works

Although this research currently has successfully designed some extended adversarial strategies

and measured the robustness of hierarchical RL algorithm, there are still some limitations in the

designed experiments.

The first one is that there are some compatibility issues with the Wrappers in the CybORG

environment, such that it cannot support the performance comparisons between two trained red

agents and other code-designed red agents. For the same reason, the environment also does not

enable training of autonomous red agents for the hierarchical RL enhanced defender. These issues

limit the possibility of training more advanced autonomous red agents. Therefore, one of the

future works is to overwrite the original wrappers given by the CybORG or implement a custom

one. Then, the capabilities of autonomous red agents can be measured, and more advanced red

agents can be trained to attack the defender using the algorithm described in Chapter 3. Moreover,

these processes can be repeated to find a more generalised attacking or defending strategy in this

interactive cyber environment.

More actions can also be added into the CybORG environment to design different kinds of

adversarial attacking strategies. One that should be considered is that actions from green agents

need to be included into the environment as noise, which is what the project description file claims.

After some preliminary modifications and testing, the currently trained blue agents are likely to

overreact if green agents perform actions (e.g., port scanning) with significant observations. This

kind of overreacting behaviour will seriously reduce the performance (the total rewards) of the

hierarchical defender, which means the defender used in this research should be trained again

for the environment with any significant noise. Another potential improvement is to enhance

the simulation of the file system. The current file system is used to add and detect malicious

files, which is different from the real-world environment where these files usually hide inside huge

numbers of benign files. It is possible to dynamically create or delete files with varying levels

of threat during the process such that it will be more challenging for defenders to find valuable

information from a larger observation space. Finally, the virtual environment should not be the

final target, and all these functions should be realised using virtual machines running on Amazon

Web Services as before to test the authenticity.

Not restricted to the environment implementation, the algorithm scalability should also be

tested in different network topologies and sizes. The current network contains only 13 machines

distributed in three subnets with basic NACL rules. However, there are countless network topolo-

gies in the real world, and the decreasing performance of the RandomAgent exacerbates the concern

about the scalability of the developed algorithm. Moreover, the increasing number of machines in

the network will lead to the exponential growth in the size of both red and blue action spaces [39]

[46]. Although developers might be able to spend more time on training to deal with the large

network size, this method does not meet the quick response requirement in industry if the blue

30

agents should be retrained (e.g., APT attackers can find other state-of-the-art strategies). Fortu-

nately, the CybORG environment provides a scenario file that can help the researchers to define

customised network topology with different numbers of machines inside. Therefore, the work for

the next stage will test the performance of the designed algorithm in as many network scenarios as

possible, and the potential solution is to implement a generator of randomised network topologies

for the CybORG environment.

Finally, the explainability of RL algorithms is a frontier and promising direction in the academic

community. Although this research tries to explain the learning process of trained agents via

their action histories, it still needs reliable quantification methods to formalise their attacking or

defending principles. This future plan will help the researchers in the Artificial Intelligence area

comprehend and retrace the process of arriving at results, and then design more accurate models

and more advanced algorithms to improve their performances and trustworthiness.

6.3 Closing Remarks

Network attacking and defending scenarios might still be a cat-and-mouse game. Network attacks

have become more complex in recent years, and adversaries will take more advanced strategies to

perform attacks. This research investigates the robustness of the RL approaches when applied to

autonomous network defenders. Although there are still some future works for limitations to be

completed, the results in Chapter 5 indicate that the designed algorithm in Chapter 4 can deal

with adversaries using different adversarial strategies over varying lengths of time with outstand-

ing performance and robustness. Currently, academic interest in autonomous network defence is

rising, involving automated penetrating testing, intelligent intrusion detection systems, and more

sophisticated techniques in a highly competitive environment like the CAGE challenge. This re-

search might help alleviate the defence dilemma in large-scale and complex network environments.

31

Bibliography

[1] CAGE Challenge 1. arXiv, 2021.

[2] CybORG: A Gym for the Development of Autonomous Cyber Agents. arXiv, 2021.

[3] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, Moutaz Alazab, et al. Zero-day

malware detection based on supervised learning algorithms of api call signatures. 2010.

[4] Paul Ammann, Duminda Wijesekera, and Saket Kaushik. Scalable, graph-based network

vulnerability analysis. In Proceedings of the 9th ACM Conference on Computer and Commu-

nications Security, pages 217–224, 2002.

[5] CVE Numbering Authorities. CVE-2014-0322. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2014-0322.

[6] CVE Numbering Authorities. CVE-2017-0144. https://cve.mitre.org/cgi-bin/cvename.

cgi?name=CVE-2017-0144.

[7] Rebecca Gurley Bace, Peter Mell, et al. Intrusion detection systems. 2001.

[8] Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning.

In Proceedings of the 26th annual international conference on machine learning, pages 41–48,

2009.

[9] Sergio Caltagirone, Andrew Pendergast, and Christopher Betz. The diamond model of intru-

sion analysis. Technical report, Center For Cyber Intelligence Analysis and Threat Research

Hanover Md, 2013.

[10] Ping Chen, Lieven Desmet, and Christophe Huygens. A study on advanced persistent threats.

In IFIP International Conference on Communications and Multimedia Security, pages 63–72.

Springer, 2014.

[11] Bhagyashree Deokar and Ambarish Hazarnis. Intrusion detection system using log files and

reinforcement learning. International Journal of Computer Applications, 45(19):28–35, 2012.

[12] Jianqing Fan, ZhaoranWang, Yuchen Xie, and Zhuoran Yang. A theoretical analysis of deep q-

learning. In Alexandre M. Bayen, Ali Jadbabaie, George Pappas, Pablo A. Parrilo, Benjamin

Recht, Claire Tomlin, and Melanie Zeilinger, editors, Proceedings of the 2nd Conference on

Learning for Dynamics and Control, volume 120 of Proceedings of Machine Learning Research,

pages 486–489. PMLR, 10–11 Jun 2020.

32

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0322
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-0322
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-0144

[13] Myles Foley, Chris Hicks, Kate Highnam, and Vasilios Mavroudis. Autonomous network

defence using reinforcement learning. In Proceedings of the 2022 ACM on Asia Conference

on Computer and Communications Security, ASIA CCS ’22, page 1252–1254, New York, NY,

USA, 2022. Association for Computing Machinery.

[14] Zhenguo Hu, Razvan Beuran, and Yasuo Tan. Automated penetration testing using deep rein-

forcement learning. In 2020 IEEE European Symposium on Security and Privacy Workshops

(EuroS&PW), pages 2–10. IEEE, 2020.

[15] Eric M Hutchins, Michael J Cloppert, Rohan M Amin, et al. Intelligence-driven computer

network defense informed by analysis of adversary campaigns and intrusion kill chains. Leading

Issues in Information Warfare & Security Research, 1(1):80, 2011.

[16] FireEye Inc. APT28: A Window into Russia’S Cyberespionage Operations?

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/

pdfs/rpt-apt28.pdf, 2010.

[17] FireEye Inc. APT41: A Dual Espionage and Cyber Crime. https://content.fireeye.com/

apt-41/rpt-apt41, 2019.

[18] FireEye Inc. M-Trends 2021: Cyber Security Insights. https://vision.fireeye.com/

editions/11/11-m-trends.html, 2021.

[19] Mandiant Inc. Darwin’s Favorite APT Group. https://www.mandiant.com/resources/

darwins-favorite-apt-group-2.

[20] Mandiant Inc. APT1: Exposing One of China’s Cyber Espionage Units. https://www.

mandiant.com/sites/default/files/2021-09/mandiant-apt1-report.pdf, 2021.

[21] Katharina Krombholz, Heidelinde Hobel, Markus Huber, and Edgar Weippl. Advanced social

engineering attacks. Journal of Information Security and applications, 22:113–122, 2015.

[22] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum. Hierarchical

deep reinforcement learning: Integrating temporal abstraction and intrinsic motivation. In

D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural

Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[23] Eric Liang, Richard Liaw, Robert Nishihara, Philipp Moritz, Roy Fox, Ken Goldberg, Joseph

Gonzalez, Michael Jordan, and Ion Stoica. RLlib: Abstractions for distributed reinforcement

learning. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th International

Conference on Machine Learning, volume 80 of Proceedings of Machine Learning Research,

pages 3053–3062. PMLR, 10–15 Jul 2018.

[24] Manuel Lopez-Martin, Belen Carro, and Antonio Sanchez-Esguevillas. Application of deep

reinforcement learning to intrusion detection for supervised problems. Expert Systems with

Applications, 141:112963, 2020.

[25] Son Hoang Toby Richer Martin Lucas Maxwell Standen, David Bowman and Richard Van

Tassel. Cyber autonomy gym for experimentation challenge 1. https://github.com/

cage-challenge/cage-challenge-1, 2021.

33

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-apt28.pdf
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-apt28.pdf
https://content.fireeye.com/apt-41/rpt-apt41
https://content.fireeye.com/apt-41/rpt-apt41
https://vision.fireeye.com/editions/11/11-m-trends.html
https://vision.fireeye.com/editions/11/11-m-trends.html
https://www.mandiant.com/resources/darwins-favorite-apt-group-2
https://www.mandiant.com/resources/darwins-favorite-apt-group-2
https://www.mandiant.com/sites/default/files/2021-09/mandiant-apt1-report.pdf
https://www.mandiant.com/sites/default/files/2021-09/mandiant-apt1-report.pdf
https://github.com/cage-challenge/cage-challenge-1
https://github.com/cage-challenge/cage-challenge-1

[26] MITRE. ATT&CK Matrix for Enterprise. https://attack.mitre.org.

[27] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,

abs/1312.5602, 2013.

[28] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward trans-

formations: Theory and application to reward shaping. In Icml, volume 99, pages 278–287,

1999.

[29] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. Hierarchical rein-

forcement learning: A comprehensive survey. ACM Computing Surveys (CSUR), 54(5):1–35,

2021.

[30] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven explo-

ration by self-supervised prediction. In International conference on machine learning, pages

2778–2787. PMLR, 2017.

[31] Julien Perolat, Bart de Vylder, Daniel Hennes, Eugene Tarassov, Florian Strub, Vincent

de Boer, Paul Muller, Jerome T Connor, Neil Burch, Thomas Anthony, et al. Master-

ing the game of stratego with model-free multiagent reinforcement learning. arXiv preprint

arXiv:2206.15378, 2022.

[32] Niels Provos et al. A virtual honeypot framework. In USENIX Security Symposium, volume

173, pages 1–14, 2004.

[33] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Pomdps make better hackers: Account-

ing for uncertainty in penetration testing. In Twenty-Sixth AAAI Conference on Artificial

Intelligence, 2012.

[34] Carlos Sarraute, Olivier Buffet, and Jörg Hoffmann. Penetration testing== pomdp solving?

arXiv preprint arXiv:1306.4714, 2013.

[35] Robert Schmidt, Gregory J Rattray, and Christopher J Fogle. Methods and apparatus for

developing cyber defense processes and a cadre of expertise, July 10 2008. US Patent App.

11/947,655.

[36] John Schulman. Proximal policy optimization, Sep 2020.

[37] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust

region policy optimization. In Francis Bach and David Blei, editors, Proceedings of the 32nd

International Conference on Machine Learning, volume 37 of Proceedings of Machine Learning

Research, pages 1889–1897, Lille, France, 07–09 Jul 2015. PMLR.

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms. CoRR, abs/1707.06347, 2017.

[39] Jonathon Schwartz and Hanna Kurniawati. Autonomous penetration testing using reinforce-

ment learning. arXiv preprint arXiv:1905.05965, 2019.

34

https://attack.mitre.org

[40] David Silver. Notes for Lecture 2 Markov Decision Processes in COMPGI13, 2015.

[41] David Silver. Notes for Lecture 7 Policy Gradient Methods in COMPGI13, 2015.

[42] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game

of go without human knowledge. nature, 550(7676):354–359, 2017.

[43] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G Pennington,

and Cody B Thomas. Mitre att&ck®: Design and philosophy. 2020.

[44] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT

press, 2018.

[45] Richard S. Sutton, Doina Precup, and Satinder Singh. Between mdps and semi-mdps:

A framework for temporal abstraction in reinforcement learning. Artificial Intelligence,

112(1):181–211, 1999.

[46] Khuong Tran, Ashlesha Akella, Maxwell Standen, Junae Kim, David Bowman, Toby Richer,

and Chin-Teng Lin. Deep hierarchical reinforcement agents for automated penetration testing.

arXiv preprint arXiv:2109.06449, 2021.

[47] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double

q-learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

[48] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,

Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grand-

master level in StarCraft II using multi-agent reinforcement learning. Nature, 575(7782):350–

354, 2019.

[49] Andrew Whitaker and Daniel P Newman. Penetration Testing and Network Defense: Pene-

tration Testing 1. Cisco Press, 2005.

[50] Xin Xu and Tao Xie. A reinforcement learning approach for host-based intrusion detection

using sequences of system calls. In International Conference on Intelligent Computing, pages

995–1003. Springer, 2005.

35

Appendix A

Code Repository and

Technical Contributions

A.1 Code Repository

All implementation code and evaluation results can be found at the following GitHub Repo:

https://github.com/ZzPoLariszZ/Autonomous-Network-Defence

It contains three main modules:

• cage-challenge-1: the CAGE challenge contains the extended adversarial strategies

• cage-challenge-1-unmodified: the unmodified algorithm and evaluation method

• cage-challenge-1-updated: the updated algorithm, evaluation method and results

Details about installation, evaluation, and training are illustrated in README.md

A.2 Technical Contributions

Pull Requests

Fix the issue that the Restore action cannot correctly remove malicious files on hosts

• https://github.com/cage-challenge/cage-challenge-2/pull/1 (Merged)

• https://github.com/cage-challenge/cage-challenge-1/pull/16 (Merged)

Fix the issue that the Impact action cannot correctly give a -10 reward to blue agents

• https://github.com/cage-challenge/cage-challenge-1/pull/17 (Merged)

36

https://github.com/ZzPoLariszZ/Autonomous-Network-Defence
https://github.com/cage-challenge/cage-challenge-2/pull/1
https://github.com/cage-challenge/cage-challenge-1/pull/16
https://github.com/cage-challenge/cage-challenge-1/pull/17

Appendix B

List of Hyperparameters

B.1 Hyperparameters for Autonomous Red Agents

Table B.1: List of Hyperparameters for Autonomous Red Agents

Hyperparameter Remove Attacker Restore Attacker

Steps in each Episode 100 100

Maximum Training Steps 20,000,000 20,000,000

CPU Parallelism 0 0

PPO: Learning Rate 0.0005 0.0005

PPO: vf share layers True True

PPO: vf loss coeff 0.05 0.05

PPO: clip param 0.75 0.50

PPO: vf clip param 2.5 5.0

ICM: Weight for Intrinsic Rewards 1.5 1.0

ICM: Learning Rate 0.01 0.01

ICM: Feature Dimensionality 288 288

ICM: Hidden Layers of Inverse Model 256 256

ICM: Hidden Layers of Forward Model 256 256

ICM: Weight for Forward Loss 0.1 0.2

ICM: Exploration Type Stochastic Sampling Stochastic Sampling

37

B.2 Hyperparameters for Autonomous Blue Agents

Table B.2: List of Hyperparameters for B lineAgent and CovertAgent Defenders

Hyperparameter
B lineAgent

Sub-Defender

CovertAgent

Sub-Defender

Steps in each Episode 100 100

Maximum Training Steps 10,000,000 10,000,000

CPU Parallelism 0 0

PPO: Learning Rate 0.0001 0.0001

PPO: vf share layers True True

PPO: vf loss coeff 0.01 0.01

PPO: clip param 0.5 0.5

PPO: vf clip param 5.0 5.0

ICM: Weight for Intrinsic Rewards 1.0 1.0

ICM: Learning Rate 0.001 0.001

ICM: Feature Dimensionality 288 288

ICM: Hidden Layers of Inverse Model 256 256

ICM: Hidden Layers of Forward Model 256 256

ICM: Weight for Forward Loss 0.2 0.2

ICM: Exploration Type Stochastic Sampling Stochastic Sampling

38

Table B.3: List of Hyperparameters for MeanderAgent and RandomAgent Defenders

Hyperparameter
MeanderAgent

Sub-defender

RandomAgent

Sub-defender

Steps in each Episode 100 100

Maximum Training Steps 10,000,000 10,000,000

CPU Parallelism 0 0

PPO: Learning Rate 0.0001 0.0001

PPO: vf share layers False False

PPO: vf loss coeff 0.01 0.01

PPO: clip param 0.5 0.5

PPO: vf clip param 5.0 5.0

ICM: Weight for Intrinsic Rewards 1.0 1.0

ICM: Learning Rate 0.001 0.001

ICM: Feature Dimensionality 288 288

ICM: Hidden Layers of Inverse Model 256 256

ICM: Hidden Layers of Forward Model 256 256

ICM: Weight for Forward Loss 0.2 0.2

ICM: Exploration Type Stochastic Sampling Stochastic Sampling

Table B.4: List of Hyperparameters for Controller

Hyperparameter Controller

Steps in each Episode 100

Maximum Training Steps 10,000,000

CPU Parallelism 16

PPO: Learning Rate 0.0001

PPO: vf share layers True

PPO: vf loss coeff 0.005

PPO: clip param 0.3

PPO: vf clip param 10.0

39

	Introduction
	Background and Motivation
	Achievements and Thesis Structure

	Literature Review
	Reinforcement Learning
	Hierarchical Reinforcement Learning

	Advanced Persistent Threats
	Processes of APT Attacks
	MITRE ATT&CK Matrix

	Autonomous Network Defence
	Automated Penetration Testing
	Intelligent Intrusion Detection Systems

	The CAGE Challenge in CybORG Environment
	Scenario and Environment
	Agents and Actions
	Red Agents as Adversaries
	Green Agents as Normal Users
	Blue Agents as Defenders

	States and Observations

	Autonomous Network Defence using Reinforcement Learning
	Proximal Policy Optimisation
	Intrinsic Curiosity Module
	Hierarchical Architecture

	Extensions and Experiments
	Extended Adversarial Strategies
	Defence Evasion
	Randomised Attacking Paths
	Autonomous Network Attackers

	Training Details
	Hardware and Software Environment
	Training Settings

	Evaluation and Comparison
	Performance of Trained Red Agents
	Performance of Trained Blue Agents

	Discussion and Conclusion
	Contributions
	Limitations and Future Works
	Closing Remarks

	Code Repository and Technical Contributions
	Code Repository
	Technical Contributions

	List of Hyperparameters
	Hyperparameters for Autonomous Red Agents
	Hyperparameters for Autonomous Blue Agents

